Processing math: 100%

Sunday, September 6, 2015

Trigonometry 01 (Useful Formulas in Trigonometry)



  1. S=rθ  [Arc = Radius × Angle in radians]
  2. Area of a sector A=12r2θ
  3. Fundamental identities of trigonometry
    • cos2θ+sin2θ=1
    • 1+tan2θ=sec2θ
    • cot2θ+1=cosec2θ

  4. θ
    00
    300
    450
    600
    900
    1800
    sinθ
    0
    12
    12
    32
    1
    0
    cosθ
    1
    32
    12
    12
    0
    1
    tanθ
    0
    13
    1
    3
    0
     
  5. sin(900θ)=cosθ
    cos(900θ)=sinθ
     
  6. sin(θ)=sinθ
    cos(θ)=cosθ
     
  7. sin(1800θ)=sinθ
    cos(1800θ)=cosθ
     
  8. sin(900+θ)=cosθ
    cos(900+θ)=sinθ
     
  9. sin(1800+θ)=sinθ
    cos(1800+θ)=cosθ
     
  10. sin(A±B)=sin(A)cos(B)±cos(A)sin(B)
    cos(A±B)=cos(A)cos(B)sin(A)sin(B)
     
  11. sin(2A)=2sin(A)cos(A)
     
  12. cos(2A)=cos2(A)sin2(A)=2cos2(A)1=12sin2(A)
     
  13. tan(2A)=2tan(A)1tan2(A)
     
  14. sin(3A)=3sin(A)4sin3(A)
     
  15. cos(3A)=4cos3(A)3cos(A)
     
  16. tan(3A)=3tan(A)tan3(A)13tan2(A)
     
  17. sinC+sinD=2sin(C+D2)cos(CD2)
     
  18. sinCsinD=2cos(C+D2)sin(CD2)
     
  19. cosC+cosD=2cos(C+D2)cos(CD2)
     
  20. cosCcosD=2sin(C+D2)sin(DC2)
     
  21. 2sinAcosB=sin(A+B)+sin(AB)
  22. 2cosAsinB=sin(A+B)sin(AB)
  23. 2cosAcosB=cos(A+B)+cos(AB)
  24. 2sinAsinB=cos(AB)cos(A+B)
     
  25. If sinθ=sinα, then θ=nπ+(1)nα
    If cosθ=cosα, then θ=2nπ±α
    If tanθ=tanα, then θ=nπ+α
    Here nZ
     
  26. For an ABC triangle, in the standard notation,
    1. sinAa=sinBb=sinCc
    2. cosA=b2+c2a22bc
    3. a=b cosC+c cosB
    4. tan(BC2)=(bcb+c)cotA2
    5. cosA2=s(sa)bc
      Here s is the double of perimeter, of the ABC triangle (2s=a+b+c)

No comments:

Post a Comment