- S=rθ [Arc = Radius × Angle in radians]
- Area of a sector A=12r2θ
- Fundamental identities of trigonometry
- cos2θ+sin2θ=1
- 1+tan2θ=sec2θ
- cot2θ+1=cosec2θ
-
θ003004506009001800sinθ0121√2√3210cosθ1√321√2120−1tanθ01√31√3∞0
- sin(900−θ)=cosθ
cos(900−θ)=sinθ
- sin(−θ)=−sinθ
cos(−θ)=cosθ
- sin(1800−θ)=sinθ
cos(1800−θ)=−cosθ
- sin(900+θ)=cosθ
cos(900+θ)=−sinθ
- sin(1800+θ)=−sinθ
cos(1800+θ)=−cosθ
- sin(A±B)=sin(A)cos(B)±cos(A)sin(B)
cos(A±B)=cos(A)cos(B)∓sin(A)sin(B)
- sin(2A)=2sin(A)cos(A)
- cos(2A)=cos2(A)−sin2(A)=2cos2(A)−1=1−2sin2(A)
- tan(2A)=2tan(A)1−tan2(A)
- sin(3A)=3sin(A)−4sin3(A)
- cos(3A)=4cos3(A)−3cos(A)
- tan(3A)=3tan(A)−tan3(A)1−3tan2(A)
- sinC+sinD=2sin(C+D2)cos(C−D2)
- sinC−sinD=2cos(C+D2)sin(C−D2)
- cosC+cosD=2cos(C+D2)cos(C−D2)
- cosC−cosD=2sin(C+D2)sin(D−C2)
- 2sinAcosB=sin(A+B)+sin(A−B)
- 2cosAsinB=sin(A+B)−sin(A−B)
- 2cosAcosB=cos(A+B)+cos(A−B)
- 2sinAsinB=cos(A−B)−cos(A+B)
- If sinθ=sinα, then θ=nπ+(−1)nα
If cosθ=cosα, then θ=2nπ±α
If tanθ=tanα, then θ=nπ+α
Here n∈Z
- For an ABC triangle, in the standard notation,
- sinAa=sinBb=sinCc
- cosA=b2+c2−a22bc
- a=b cosC+c cosB
- tan(B−C2)=(b−cb+c)cotA2
- cosA2=√s(s−a)bc
Here s is the double of perimeter, of the ABC triangle (2s=a+b+c)
Mathematics has become a hard subject for most students. This blog tries to provide some theories of mathematics simply, which might easy to understand. There are lot of ares in mathematics and this blog will NOT cover all the areas as this is only to provide some basic knowledge of certain mathematical concepts. Please enable JAVA Scripts to see the equations properly.
Sunday, September 6, 2015
Trigonometry 01 (Useful Formulas in Trigonometry)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment